猫眼电影
猫眼电影记者 黄延强 报道首次登录送91元红包
随着多模态大模型(MLLMs)在各类视觉语言任务中展现出强大的理解与交互能力,如何高效地处理原生高分辨率图像以捕捉精细的视觉信息,已成为提升模型性能的关键方向。
然而,主流的视觉编码范式往往难以兼顾性能与效率:基于切片的编码方法虽能降低计算开销,却牺牲了全局上下文感知能力;而全局原生分辨率编码在提升整体性能的同时,又带来了巨大的计算负担。同时,现有的视觉压缩策略与特征提取过程相对独立,难以在编码早期有效控制信息冗余,缺乏一个兼顾细粒度建模与计算效率的统一架构。
针对如何在高清原生分辨率下,保持图像全局理解能力的同时,还能快速推理这一核心问题,来自清华大学、中科院的研究团队正式发布LLaVA-UHD v3!
论文标题:LLAVA-UHD V3: PROGRESSIVE VISUAL COMPRESSION FOR EFFICIENT NATIVE-RESOLUTION ENCODING IN MLLMS论文链接:https://arxiv.org/abs/2511.21150代码链接:https://github.com/thunlp/LLaVA-UHDhuggingface 链接:https://huggingface.co/Sishxo/LLaVA-UHD-v3
LLaVA-UHD-v3 提出了全新的渐进式视觉压缩框架 ——Progressive Visual Compression(PVC),由Refined Patch Embedding(RPE)与Windowed Token Compression(WTC)两个核心组件构成。该框架在保持全局语义一致性的前提下,显著减少视觉 Token 数量,从根本上提升原生高分辨率视觉编码的效率。依托 PVC,LLaVA-UHD-v3 在性能上可与 Qwen2-VL 相媲美,同时实现1.9× 的 TTFT 加速,完整训练仅需32 张 A100、约 300 小时即可完成。
切片编码 vs 全图编码深入分析
为了公平对比两种主流视觉编码方式 —— 基于切片的编码 (Slice-based Encoding, SBE) 与 全局原生分辨率编码 (Global Native-Resolution Encoding, GNE) —— 团队使用相同模型架构 + 相同训练数据 + 相同评估 protocol。在此基础上,既在通用多模态 benchmark 上测试,也专门构建了一个合成数据集 ShapeGrid 用于空间感知 / 定位能力分析。
在 ShapeGrid (及其 “Sudoku-style” 子集) 上,GNE 相比 SBE 在空间感知 / 定位任务上的表现有明显优势:空间感知能力平均提升约11.0%。
同时,在通用视觉 - 语言理解任务中,GNE 在语义理解表现上也略优于 SBE(平均提升约2.1%)。
更重要的是,通过对比注意力热图、激活分布 (attention maps),研究发现 SBE 在空间定位任务中表现出系统性的方向、结构偏差 (例如水平、垂直方向不均衡) —— 也就是说 SBE 的切片机制破坏了图像的空间连续性 (spatial continuity 、geometry),从而削弱了空间理解、定位的可靠性。
因此,该对比实验清晰地表明:尽管 SBE 在效率上有优势,但从语义 + 空间 + 几何一致性 (global context + spatial reasoning) 的角度,GNE 明显更适合需要空间感知、高分辨率理解与推理的任务。
全图编码的高效解决方案
全局原生分辨率编码带来了较高的计算成本,这凸显了迫切需要一种原生且高效的视觉编码范式。因此,团队提出了 LLaVA-UHD v3,一种配备了渐进式视觉压缩(PVC)方法的多模态大模型(MLLM),用于高效的原生分辨率编码。
PVC 架构由两个核心模块组成:
精细化 Patch 嵌入 (Refined Patch Embedding, RPE):通过将图像划分为更小尺寸的 patch,并用伪逆 (pseudo-inverse) 方法将预训练模型原有 embedding 权重转换为新的、更细粒度的 embedding。这样,原本粗粒度 patch 的语义信息被近似保留,但实现了更丰富的视觉语义提取建模。窗口化 Token 压缩 (Windowed Token Compression, WTC):在 ViT 的中间层,将空间上相邻的多个 token(例如 2×2 区域)聚合为一个新 token,初期以均匀平均池化 (average pooling) 起步,并通过一个轻量级、零初始化的 MLP 模型学习内容自适应的池化权重,从而逐渐学会对更重要区域赋予更高权重。这样,随着网络深度的推进,token 数量被大幅压缩,而关键语义信息得以保留。
这种 “先细粒度建模 + 再渐进压缩” 的设计,使得 PVC 在兼顾全局语义 + 局部细节的同时,大幅降低计算量。
实验验证:PVC 在推理效率提升的同时保留模型能力
效率方面,在统一的 LLM(Qwen2-7B)框架下,本文提出的 ViT-UHD 编码器相比 MoonViT 实现了2.4× 加速,相比 Qwen2.5-ViT 也快 1.9×。将其整合到完整的 MLLM 中后,LLaVA-UHD v3 的 TTFT 相较强大的 Qwen2-VL降低 49%(约快 1.9×),甚至比以高效著称的切片编码模型 MiniCPM-V2.6 仍然快约 10%。
在性能方面,LLaVA-UHD v3 仅使用约 2000 万对图文数据完成训练,远低于 Qwen2-VL(约 7 亿)和 MiniCPM-V-2.6(约 4.6 亿)等商业模型的训练规模。然而,其在多项视觉语言基准中依旧展现出高度竞争力。同时,它实现了64× 的视觉 Token 压缩率,远超对手(Qwen2-VL 约为 4×,MiniCPM-V2.6 为 16×),但在需要细粒度视觉信息的任务上 —— 包括 HallusionBench(幻觉检测)、CV-Bench(空间推理)以及 OCR&Chart(文字与图表识别)—— 依然取得了与 SOTA 模型相当甚至更优的表现。
这些结果充分验证了 PVC 框架的核心价值:在大幅减少视觉 Token 和推理开销的同时,仍能稳健保留关键的细节感知与全局理解能力,实现真正意义上的 “高效而不降级”。
基于对全图编码与切片编码优劣的深入分析,LLaVA-UHD v3 提出了结合两者优势的渐进式视觉压缩全图编码方案,在保证模型能力的前提下实现了显著的推理效率提升,并展现出良好的迁移与泛化能力,为 MLLM 的高精度原生分辨率建模提供了可行路径。
不过,实验分析表明,缺失了预对齐阶段的 ViT-UHD 性能不佳,这表明引入 PVC 后的视觉编码器能力仍未达到上限:仅靠当前 MLLM 的标准训练流程,很难完全挖掘 ViT 的视觉表征潜力,其学习尚未饱和。此外,随着 Token 数量增大,Transformer 的二次复杂度仍然会带来成本瓶颈。
未来,仍需要探索更适合多模态任务的视觉编码预训练策略,并逐步引入线性复杂度算子替代传统的二次复杂度注意力机制,从而实现真正可扩展的高效多模态建模。
时事1:大奖娱乐网址
12月23日,澳门俩跳远小将携手特奥摘牌:从跳出第一米到更远的未来,据统计,今年一至四季度,国内电池级碳酸锂季度均价分别为7.58万元/吨、6.52万元/吨、7.3万元/吨、8.44万元/吨。,亚博怎么注册。
12月23日,首飞高原机场!东航C919国产大飞机执飞上海至兰州定期航线,决心虽坚,但挑战也不小。中信建投面临的首要问题就是缺少鸿蒙开发人才,而鸿蒙团队也迅速响应、提供了诸多支持,为中信建投开发团队组织专项培训,帮助他们用时三个月就推出了首个Beta版本,跑出了传统金融业拥抱新生态的“鸿蒙速度”。,leyu乐鱼官方下载,云顶娱乐手机网页版登录,沙巴足球官网。
时事2:新万博代理平台地址
12月23日,以美食为桥促文化交流 国际小吃创意大赛亮相福建沙县,CBU购买黄金时,向经济注入大量乌兹别克苏姆,为了减轻这种流动性投放,CBU在2018年采取了中立原则,即通过当地货币交易所出售外汇来抵消其黄金购买。,kok官网登陆,best365手机官方,注册就送50元。
12月23日,美国青年赴广西南宁交流:传承飞虎队精神 体验中国文化,第三,跨生态协同能力,整合“租赁+服务”的生态能力也非常关键。,安卓现金斗牛,威尼斯人充值中心,真钱彩网。
时事3:世界杯去哪里买球啊
12月23日,《大运河随想》古琴专场音乐会在京上演,她表示,每一次生产力迭代都催生工业革命,当下布局新质生产力,核心是应对市场环境挑战:通过降本增效,以最低成本实现最高收益。我们能做的,是在不可控的大环境中,聚焦可控的用户精细化运营——用AI赋能用户经营,最大化转化率,提升生产效率。,ag捕鱼王的打法,牛宝体育官网注册,手机云顶娱乐登录。
12月23日,香港“大埔宏福苑援助基金”总额达到约36亿港元,唐家成又称,与国际交易所同行相比,港交所的股票业务对收入贡献比较高,意味多元化发展的空间还很大,还有很多可大力开拓的新业务,但开拓新业务的同时一定要守住股市优势。,亚游平台登录,九游会官网,博狗体育官方。
时事4:优信彩票首页下载
12月23日,鄱阳湖跌破极枯水位 通江水体面积减九成,本试卷现代文阅读I提到,长久以来,人们只能看到月球固定朝向地球的一面,“嫦娥四号”探月任务揭开了月背的神秘面纱;随着“天问一号”飞离地球,航天人的目光又投向遥远的深空……,万博maxbet体育,皇冠官方app周润发代言,九万彩票平台下载。
12月23日,外籍友人在沪参与献血 深度参与城市公益事业,他在 4 月称:“这些关税将为我们带来前所未有的经济增长,这一幕值得期待。”,AG亚洲国际游手机客户端,火狐平台app,趣味捕鱼达人新版。
责编:全秀珍
审核:博格诺
责编:张舒婷












