猫眼电影
猫眼电影记者 关谷刚 报道首次登录送91元红包
腾讯优图 投稿量子位 | 公众号 QbitAI
在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。
然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。
近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。
目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。
发现:AI图像检测器其实只是在“识别训练集”
研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。
这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:
真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。
在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。
对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:
解法和思路
针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:
像素域对齐(Pixel Alignment)
使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。
频率域对齐(Frequency Alignment)
仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。
△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量
实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。
△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率
因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。
最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。
经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。
实验效果
传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。
为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。
在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。
综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。
无偏的训练数据助力泛化性提升
在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。
但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。
“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。
论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment
时事1:猎人国际真人cs十三陵
12月25日,贵州凤冈47个村集体经济开展全员分红 资金达251万元,这样的创新并非个例。鸿蒙版同程旅行App商务负责人王志强举了一个导航去酒店的案例,以前通常的操作是,用户先预定酒店,再到车机地图中搜索酒店地址,最后才能进行导航;而在鸿蒙生态中,用户只需要摇一摇手机或者与车机碰一碰,酒店地址就流转到了车机上,可以直接一键发起导航。真正实现了“服务随人而动、体验跨端连贯”,这正是鸿蒙“万物互联”理念在日常场景中的生动落地。,葡京app网址多少。
12月25日,广德“三件套”带火跨省游,小城味道成出圈密码?,机构对黄金后市依然保持乐观。高盛在最新报告中指出,在央行结构性高需求与美联储降息带来的周期性支撑下,预计到2026年12月,黄金价格将上涨14%,升至4900美元/盎司。,bet356亚洲版在线体育,澳亚国际登录入口,完美体育平台注册流程。
时事2:威尼斯人手机版登
12月25日,中科院院士白春礼:企业在国家创新体系中的角色正在升级,诺泰生物成立于2009年,总部位于浙江杭州,是一家专注于多肽类药物、小分子化药及原料药研发、生产与销售的高新技术企业。2021年5月,公司在上交所科创板成功上市(股票代码:688076),募集资金约5.5亿元,主打“创新药+CDMO”双轮驱动模式。,多人炸金花单机中文版下载,亚博手机APP,网上电玩森林。
12月25日,运动+研学 多地首个“雪假”有滋有味乐趣十足,[环球时报报道 记者 倪浩]8月3日,郑钦文夺得2024巴黎奥运会网球女单冠军,实现中国选手在该项目上的历史性突破,也点燃了民众参与网球运动的热情,网球热度随之大涨。接受《环球时报》记者采访的专家认为,体育明星与体育经济会形成正向反馈:体育明星的示范效应会提振相关体育产业、吸引更多人参与到运动中来,大众的广泛参与则会成为“未来明星运动员”诞生的基石。,mg官网地址,世界杯足球投注规则,ag真人地址。
时事3:万博官网主页
12月25日,广西提升中医药服务可及性 打造四级网络惠及基层,乘着这股热潮,美国投资顾问公司锐联财智于今年 9 月助力推出了一只纳斯达克上市基金。该基金为投资者提供了布局 “中国版谷歌、元宇宙平台公司、特斯拉、苹果以及开放人工智能公司” 相关标的的渠道。,皇冠在哪里玩,开元棋盘官方网站2227,3044澳门永利。
12月25日,WTT香港总决赛:王楚钦/孙颖莎取得混双两连胜,但从销售渠道来看,国民养老保险对银保渠道依赖度较高,2024年保费收入居前5的保险产品均来自银保渠道。个人养老金业务同样如此,数据显示,为国民养老保险个人养老金业务提供代销服务的银行和券商机构超过20家。,im电竞平台官网,金沙网页游戏,捕鱼游戏注册送。
时事4:万博亚洲客
12月25日,日本政治经济学者:高市言论偏离和平路线 应当警惕,这段视频发布于3月17日,视频中的女孩是四川眉山市的一位初二学生,教育女孩的便是自称为资深家庭教育专家的赵菊英。有网友指出,在赵菊英家访这一女孩的过程中,女孩对待赵菊英的眼神从最初的爱笑有光,到最后变成了愤恨无神。,365体育投注3,银河手机注册,云顶娱乐网站网址导航。
12月25日,中共锦州市委召开党外人士和民营企业家代表座谈会,这种向数据中心的倾斜不仅仅是资金流向的变化,更是商业地产投资性质的根本性转变。传统上,写字楼、公寓和购物中心被视为多元化且稳定的资产,能够对冲科技行业的波动。在2000年至2002年的科技股抛售潮中,尽管纳斯达克指数暴跌近80%,但商业地产价值基本持平或仅小幅下跌。如今,这种脱钩关系已不复存在。,单双攻略(最老版),银河游戏娱乐登录,188bet金宝搏在线官网。
责编:冯怡
审核:刘德培
责编:雷奥












