猫眼电影
猫眼电影记者 林森森 报道首次登录送91元红包
随着多模态大模型(MLLMs)在各类视觉语言任务中展现出强大的理解与交互能力,如何高效地处理原生高分辨率图像以捕捉精细的视觉信息,已成为提升模型性能的关键方向。
然而,主流的视觉编码范式往往难以兼顾性能与效率:基于切片的编码方法虽能降低计算开销,却牺牲了全局上下文感知能力;而全局原生分辨率编码在提升整体性能的同时,又带来了巨大的计算负担。同时,现有的视觉压缩策略与特征提取过程相对独立,难以在编码早期有效控制信息冗余,缺乏一个兼顾细粒度建模与计算效率的统一架构。
针对如何在高清原生分辨率下,保持图像全局理解能力的同时,还能快速推理这一核心问题,来自清华大学、中科院的研究团队正式发布LLaVA-UHD v3!
论文标题:LLAVA-UHD V3: PROGRESSIVE VISUAL COMPRESSION FOR EFFICIENT NATIVE-RESOLUTION ENCODING IN MLLMS论文链接:https://arxiv.org/abs/2511.21150代码链接:https://github.com/thunlp/LLaVA-UHDhuggingface 链接:https://huggingface.co/Sishxo/LLaVA-UHD-v3
LLaVA-UHD-v3 提出了全新的渐进式视觉压缩框架 ——Progressive Visual Compression(PVC),由Refined Patch Embedding(RPE)与Windowed Token Compression(WTC)两个核心组件构成。该框架在保持全局语义一致性的前提下,显著减少视觉 Token 数量,从根本上提升原生高分辨率视觉编码的效率。依托 PVC,LLaVA-UHD-v3 在性能上可与 Qwen2-VL 相媲美,同时实现1.9× 的 TTFT 加速,完整训练仅需32 张 A100、约 300 小时即可完成。
切片编码 vs 全图编码深入分析
为了公平对比两种主流视觉编码方式 —— 基于切片的编码 (Slice-based Encoding, SBE) 与 全局原生分辨率编码 (Global Native-Resolution Encoding, GNE) —— 团队使用相同模型架构 + 相同训练数据 + 相同评估 protocol。在此基础上,既在通用多模态 benchmark 上测试,也专门构建了一个合成数据集 ShapeGrid 用于空间感知 / 定位能力分析。
在 ShapeGrid (及其 “Sudoku-style” 子集) 上,GNE 相比 SBE 在空间感知 / 定位任务上的表现有明显优势:空间感知能力平均提升约11.0%。
同时,在通用视觉 - 语言理解任务中,GNE 在语义理解表现上也略优于 SBE(平均提升约2.1%)。
更重要的是,通过对比注意力热图、激活分布 (attention maps),研究发现 SBE 在空间定位任务中表现出系统性的方向、结构偏差 (例如水平、垂直方向不均衡) —— 也就是说 SBE 的切片机制破坏了图像的空间连续性 (spatial continuity 、geometry),从而削弱了空间理解、定位的可靠性。
因此,该对比实验清晰地表明:尽管 SBE 在效率上有优势,但从语义 + 空间 + 几何一致性 (global context + spatial reasoning) 的角度,GNE 明显更适合需要空间感知、高分辨率理解与推理的任务。
全图编码的高效解决方案
全局原生分辨率编码带来了较高的计算成本,这凸显了迫切需要一种原生且高效的视觉编码范式。因此,团队提出了 LLaVA-UHD v3,一种配备了渐进式视觉压缩(PVC)方法的多模态大模型(MLLM),用于高效的原生分辨率编码。
PVC 架构由两个核心模块组成:
精细化 Patch 嵌入 (Refined Patch Embedding, RPE):通过将图像划分为更小尺寸的 patch,并用伪逆 (pseudo-inverse) 方法将预训练模型原有 embedding 权重转换为新的、更细粒度的 embedding。这样,原本粗粒度 patch 的语义信息被近似保留,但实现了更丰富的视觉语义提取建模。窗口化 Token 压缩 (Windowed Token Compression, WTC):在 ViT 的中间层,将空间上相邻的多个 token(例如 2×2 区域)聚合为一个新 token,初期以均匀平均池化 (average pooling) 起步,并通过一个轻量级、零初始化的 MLP 模型学习内容自适应的池化权重,从而逐渐学会对更重要区域赋予更高权重。这样,随着网络深度的推进,token 数量被大幅压缩,而关键语义信息得以保留。
这种 “先细粒度建模 + 再渐进压缩” 的设计,使得 PVC 在兼顾全局语义 + 局部细节的同时,大幅降低计算量。
实验验证:PVC 在推理效率提升的同时保留模型能力
效率方面,在统一的 LLM(Qwen2-7B)框架下,本文提出的 ViT-UHD 编码器相比 MoonViT 实现了2.4× 加速,相比 Qwen2.5-ViT 也快 1.9×。将其整合到完整的 MLLM 中后,LLaVA-UHD v3 的 TTFT 相较强大的 Qwen2-VL降低 49%(约快 1.9×),甚至比以高效著称的切片编码模型 MiniCPM-V2.6 仍然快约 10%。
在性能方面,LLaVA-UHD v3 仅使用约 2000 万对图文数据完成训练,远低于 Qwen2-VL(约 7 亿)和 MiniCPM-V-2.6(约 4.6 亿)等商业模型的训练规模。然而,其在多项视觉语言基准中依旧展现出高度竞争力。同时,它实现了64× 的视觉 Token 压缩率,远超对手(Qwen2-VL 约为 4×,MiniCPM-V2.6 为 16×),但在需要细粒度视觉信息的任务上 —— 包括 HallusionBench(幻觉检测)、CV-Bench(空间推理)以及 OCR&Chart(文字与图表识别)—— 依然取得了与 SOTA 模型相当甚至更优的表现。
这些结果充分验证了 PVC 框架的核心价值:在大幅减少视觉 Token 和推理开销的同时,仍能稳健保留关键的细节感知与全局理解能力,实现真正意义上的 “高效而不降级”。
基于对全图编码与切片编码优劣的深入分析,LLaVA-UHD v3 提出了结合两者优势的渐进式视觉压缩全图编码方案,在保证模型能力的前提下实现了显著的推理效率提升,并展现出良好的迁移与泛化能力,为 MLLM 的高精度原生分辨率建模提供了可行路径。
不过,实验分析表明,缺失了预对齐阶段的 ViT-UHD 性能不佳,这表明引入 PVC 后的视觉编码器能力仍未达到上限:仅靠当前 MLLM 的标准训练流程,很难完全挖掘 ViT 的视觉表征潜力,其学习尚未饱和。此外,随着 Token 数量增大,Transformer 的二次复杂度仍然会带来成本瓶颈。
未来,仍需要探索更适合多模态任务的视觉编码预训练策略,并逐步引入线性复杂度算子替代传统的二次复杂度注意力机制,从而实现真正可扩展的高效多模态建模。
时事1:注册就送68元
12月28日,一碗木薯糖水下肚 为何感觉“好晕好累”?,例如,当地重点瞄准的“一所城市至少一所高水平大学建设模式”,在近两年陆续迎来可喜进展——,炸金花app下载官网。
12月28日,从“田间革命”到国家战略 生物农药方兴未艾蕴新机,同一日,香港交易所发布业绩公告显示,香港交易所第一季度收入及其他收益为52亿港元,同比减少6%;第一季度净利润为29.7亿港元,同比减少13%。,足球直播比分90,大富豪网赌游戏,澳门九五至尊官网。
时事2:球棎体
12月28日,第十五届中国智能车未来挑战赛举行 机器人担任“考官”,从资产质量角度看,尽管公司对应收账款计提了坏账准备,但在经济下行压力增大、部分医疗机构经营困难的宏观环境下,应收账款的实际回收风险正在上升。一旦发生大规模坏账,将对公司利润造成直接冲击,并进一步恶化现金流状况。,365bet体育在线注册官网,马会传真-信封料,威尼斯电玩城。
12月28日,“亲如一家”因为“工作到家”,西安饮食公布的2024年一季度报告则显示,公司营业收入1.82亿元,同比增长3.47%,归属于上市公司股东的净利润仍亏损2993万元,但同比收窄3.83%。,欧宝体育官方下载,m6米乐平台提款能提吗,AG捕鱼游戏怎么稳赢。
时事3:游戏AG是什么意思
12月28日,巴西利美拉举办“中国文化日”,安启元同志,1933年7月生,陕西临潼人,1953年4月加入中国共产党,1956年6月参加工作。,如何在网上投注世界杯,英亚国际综合,百度世界杯竞彩网站。
12月28日,电动自行车新国标今起实施 “人防+技防”守护充电安全,考克斯汽车临时首席经济学家杰里米・罗布上周表示:‘联邦购车补贴在三季度末突然终止,此前直接催生了新车与二手车市场的一波电动汽车抢购潮;补贴退场后,电动汽车的销量增速与新车产能扩张节奏均出现放缓。2026 年,将是电动汽车行业的关键之年。’,AG亚洲官网只为非同凡响,亚博AG真人,博鱼体育官网网址。
时事4:银河国际游戏平
12月28日,福州首家市内免税店将于12月18日开业,前一交易日(12月22日),多只A500ETF“吸金”;本月以来,中证A500ETF(159338)、A500ETF南方(159352)、A500ETF基金(512050)、A500ETF华泰柏瑞(563360)资金净流入额均超过100亿元。,威尼斯游戏充值中心,GPK钱龙捕鱼打法,银河网站注册。
12月28日,何立峰出席海南自由贸易港全岛封关启动活动并讲话,美国11月通胀意外降温,但大多数华尔街分析人士对《财经》指出,数据可能受到政府停摆的影响而失真。此前由于政府停摆,10月CPI(消费者物价指数)数据被取消发布。美国劳工部雇员为本月发布的数据所无法获得的变通方法和缺失数据,可能已导致数据向下倾斜。对于一些价格指数,美国劳工统计局使用了非调查数据进行指数计算。,最新手机捕鱼上下分,巴黎人电脑版,捕鱼达人联网版。
责编:西蒙·柯克雷尔
审核:孔庆萍
责编:赵同良












