搜索 猫眼电影 融媒体矩阵
  • 山东手机报

  • 猫眼电影

  • 大众网官方微信

  • 大众网官方微博

  • 抖音

  • 人民号

  • 全国党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

AIGC检测为何频频“看走眼”?问题可能出在数据源头

2025-12-27 07:02:19
来源:

猫眼电影

作者:

田雅婷

手机查看

  猫眼电影记者 师昌绪 报道首次登录送91元红包

腾讯优图 投稿量子位 | 公众号 QbitAI

在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。

然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。

近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。

目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。

发现:AI图像检测器其实只是在“识别训练集”

研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。

这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:

真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。

在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。

对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:

解法和思路

针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:

像素域对齐(Pixel Alignment)

使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。

频率域对齐(Frequency Alignment)

仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。

△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量

实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。

△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率

因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。

最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。

经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。

实验效果

传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。

为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。

在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。

综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。

无偏的训练数据助力泛化性提升

在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。

但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。

“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。

论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment

 时事1:国际音标真人口型图

  12月27日,诠释多元共生之美:“高原长歌—包尔赤金•纳日黎歌作品展”开幕,兰州机场T1+T2面积8.9万平方米,去年吞吐量超过1700万人次,可以说不堪重负。乌鲁木齐机场T1+T2+T3面积18.48万平方米,需要承载超过2700万人次的吞吐量。,历届欧洲杯冠亚军列表。

  12月27日,台青分享大陆创业经验 希望更多人了解真实的大陆,面壁智能 CEO 李大海表示,“感谢各投资方对面壁的认可与支持。我们致力于携手产业链合作伙伴,让高效端侧大模型运行在海量终端之上,为广大消费者带来创新、普惠的智能体验。在大模型行业赋能的加速时刻,处于国家政策利好、技术加快迭代、消费场景勃发的新发展阶段,面壁在本次融资后,必将乘势而上,加码投入,持续领跑端侧 AI 市场。”,kok网页登录,赌城风云3,尊龙登录。

 时事2:斗牛看4张牌抢庄攻略

  12月27日,中资数字企业出海遇“险”?上海推出多个出海服务载体护航,财政部数据显示,2023年关税2591亿元,同比下降9.4%。2024年一季度关税567亿元,同比下降8.6%。,在线世界杯赌球网站,qq世界杯投注,旧版球探体育比分。

  12月27日,海南自贸港启动全岛封关运作,这些新机遇与你我有关,陈方清:1952年出生。曾任中央金融工委组织部副部长,中国银监会监事会工作部主任、中国信达资产管理公司副总裁、幸福人寿执行董事、党委书记。2009年起任信达财险董事长、执行董事。2019年至2021年任黑龙江京蓝科技独立董事。,斗牛怎么才能赢钱,大发888赌博,云顶国际快速开户。

 时事3:ManBetx体育外围

  12月27日,谌贻琴在广东调研时强调 加快建设足球青训体系 着力提升残疾人民生保障水平,演练中各艇依次展开编队运动、大角度转向,情报侦察与电子防御等课目训练。此次训练,立足复杂条件淬炼兵力。突出指挥控制、人员协同配合、应急情况处置。发现解决疑难杂症,检验武器装备性能的同时进一步提升部队能战胜战能力。,沙巴体育注册开户,手机麻将输赢规律,正版挂牌。

  12月27日,特奥会西藏队选手索南加参:吹着高原的风长大的汉子,好消息是,公司在创新研发方面的投入正逐步取得成果。今年以来,公司先后有多个一、二类创新药获批临床试验。公司还围绕神经系统用药和甾体激素类药物领域培育多个核心产品。这些创新产品的研发和上市,有望为公司未来的增长提供新的动力。,亚博在线注册,三昇体育靠谱吗,银河总站官方。

 时事4:二八杠的口诀

  12月27日,冬天限定的“神仙菜”!好吃又有营养 这份时令美味别错过,体量不及西安的兰州,也拿出大手笔。T3航站楼面积40万平方米,综合交通中心27万平方米,是甘肃民航发展史上规模最大的工程。,人人体育app官网下载,bet356下载客户端,球探网即时比分足球。

  12月27日,国防部:日方避实就虚、偷梁换柱、倒打一耙不可能得逞,相比之下,同处珠三角的东莞经济明显回暖。一季度,东莞GDP达到2752.68亿元,同比增长5.5%,较去年同期回升3.3个百分点,其中规上工业增加值增速高达10.1%,表现亮眼。,k1体育棋牌链接大厅,华博体育,下载dafa娱乐游戏手机版。

责编:冯柚梓

审核:李尚文

责编:任贤齐

相关推荐 换一换