猫眼电影
猫眼电影记者 刘文典 报道首次登录送91元红包
腾讯优图 投稿量子位 | 公众号 QbitAI
在AIGC技术飞速发展的背景下,只需一行简单的prompt就可生成高逼真内容,然而,这一技术进步也带来了严重的安全隐患:虚假新闻、身份欺诈、版权侵犯等问题日益突出。AI生成图像检测也成为了AIGC时代的基础安全能力。
然而在实际应用中, 存在一个“尴尬”现象:检测器往往在“考场”(公开基准数据集)上分数耀眼,一旦换到“战场”(全新模型或数据分布),性能会大幅下降。
近日,腾讯优图实验室联合华东理工大学、北京大学等研究团队在A生成图像检测(AI-Generated Image Detection)泛化问题上展开研究,提出Dual Data Alignment(双重数据对齐,DDA)方法,从数据层面系统性抑制“偏差特征”,显著提升检测器在跨模型、跨数据域场景下的泛化能力。
目前,相关论文《Dual Data Alignment Makes AI-Generated Image Detector Easier Generalizable》已被NeurIPS 2025接收为Spotlight(录取率 Top 3.2%)。
发现:AI图像检测器其实只是在“识别训练集”
研究团队认为问题的根源可能在于训练数据本身的构造方式,使得检测器并没有真正学会区分真假的本质特征,而是“走了捷径”,依赖于一些与真伪本身无关的“偏差特征”(Biased Features)来做出判断。
这些偏差特征是真实图像与AI生成图像在训练数据收集过程中产生的系统性差异。具体来说:
真实图像:来源渠道复杂,清晰度与画质参差不齐;分辨率分布分散;几乎都以JPEG 格式存储,并带有不同程度的压缩痕迹。AI生成图像:呈现出高度统一的模式,分辨率常集中在256×256、512×512、1024×1024等固定档位;并且大多以PNG等无损格式存储;画面干净,没有明显压缩痕迹。
在这样的数据构成下,检测模型可能会去学习“投机策略”,例如PNG≈假图,JPEG≈真图。这种“捷径”可以在某些标准测试集(如GenImage)上甚至可以达到100%的检测准确率,然而一旦对AI生成的PNG图像进行简单的JPEG压缩,使其在格式和压缩痕迹上接近真实图像,这类检测器的性能就会出现“断崖式下跌”。
对比真实图像和AI生成图像,两者可能存在格式偏差、语义偏差和尺寸偏差:
解法和思路
针对这一问题,研究团队认为如果数据本身带有系统性偏差,模型设计的再复杂也难免“学偏”。因此提出了DDA(双重数据对齐,Dual Data Alignment) 方法,通过重构和对齐训练数据来消除偏差。其核心操作分为三步:
像素域对齐(Pixel Alignment)
使用VAE(变分自编码器)技术对每一张真实图像进行重建,得到一张内容一致、分辨率统一的AI生成图像。这一步操作消除了内容和分辨率上的偏差。
频率域对齐(Frequency Alignment)
仅仅像素域对齐是不够的,由于真实图像大多经过JPEG压缩,其高频信息(细节纹理)是受损的;而VAE在重建图像时,反而会“补全”这些细节,创造出比真实图像更丰富的高频信息,这本身又成了一种新的偏差。
△可视化对比真实图像(JPEG75)和AI生成图像(PNG)的高频分量
实验也证实了这一点:当研究者将一幅重建图像中“完美”的高频部分,替换为真实图像中“受损”的高频部分后,检测器对VAE重建图的检出率会大幅下降。
△对比VAE重建图和VAE重建图(高频分量对齐真实图像)的检出率
因此,关键的第二步是对重建图执行与真实图完全相同的JPEG压缩,使得两类图像在频率域上对齐。
最后采用Mixup将真实图像与经过对齐的生成图像在像素层面进行混合,进一步增强真图和假图的对齐程度。
经过上述步骤,就能得到一组在像素和频率特征上都高度一致的“真/假”数据集,促进模型学习更泛化的“区分真假”的特征。
实验效果
传统的学术评测往往是为每个Benchmark单独训练一个检测器评估。这种评测方式与真实应用场景不符。
为了更真实地检验方法的泛化能力,研究团队提出了一种严格的评测准则:只训练一个通用模型,然后用它直接在所有未知的、跨域的测试集上评估。
在这一严格的评测标准下,DDA(基于COCO数据重建)实验效果如下。
综合表现:在一个包含11个不同Benchmark的全面测试中,DDA在其中 10个 上取得了领先表现。安全下限(min-ACC):对于安全产品而言,决定短板的“最差表现”往往比平均分更重要。在衡量模型最差表现的min-ACC指标上,DDA比第二名高出了27.5个百分点。In-the-wild测试:在公认高难度的真实场景“In-the-wild”数据集Chameleon上,检测准确率达到82.4%。跨架构泛化:DDA训练的模型不仅能检测主流的Diffusion模型生成的图像,其学到的本质特征还能有效泛化至GAN和自回归模型等完全不同,甚至没有用到VAE的生成架构。
无偏的训练数据助力泛化性提升
在AI生成图像日益逼真的今天,如何准确识别“真”与“假”变得尤为关键。
但AIGC检测模型的泛化性问题,有时并不需要设计复杂的模型结构,而是需要回归数据本身,从源头消除那些看似微小却足以致命的“偏见”。
“双重数据对齐”提供了一个新的技术思路,通过提供更“高质量”的数据,迫使这些模型最终学习正确的知识,并专注于真正重要的特征,从而获得更强的泛化能力。
论文地址:https://arxiv.org/pdf/2505.14359GitHub:https://github.com/roy-ch/Dual-Data-Alignment
时事1:虎博城唯一官方网站新网站
12月26日,缅甸政界人士:台湾问题是中国内政 外部势力无权干涉,本文由公众号IPO早知道(ID:ipozaozhidao)原创撰写,如需转载请联系C叔↓↓↓,胜算策略。
12月26日,破解“发现即扩散”困局 中国科学家突破水生入侵物种全链条技术,该行分析师在一份报告中指出:“2025年是供应严重受阻的一年,数个大型矿山遭遇了重大的运营挑战。”并补充道:“总体而言,我们认为市场处于明显的供应短缺状态。”,正规网投彩票平台,博亚体育app下载最新平台,棋盘游戏赚钱。
时事2:注册送金币的电玩城
12月26日,西藏甘丹寺举行燃灯日活动,公开资料显示,唐一军出生于1961年3月,山东莒县人,曾任浙江省宁波市政协主席,宁波市委副书记、代市长,浙江省委常委、宁波市委书记,浙江省委副书记、宁波市委书记等职,2017年10月任辽宁省委副书记、代省长,2018年1月任辽宁省省长,2020年4月任司法部部长、党组副书记,2021年8月任司法部部长、党组书记。,世界杯买球趟c77,tv,亚新电子网投,AG亚游到底是真是假。
12月26日,海南500千伏主网架工程投产 电力输送能力提升逾4倍,宝马集团董事长齐普策表示,欧委会对中国电动汽车加征关税是错误的决策,加征关税将会阻碍欧洲车企的发展,同时也会损害欧洲自身利益。“贸易保护主义势必引发连锁反应:以关税回应关税,以孤立取代合作。对宝马集团来说,类似增加进口关税这样的保护主义措施,无法帮助企业提升全球竞争力。”,星际线上电子下载,12博网站,易博俱乐部。
时事3:世界杯足球投注软件
12月26日,(走进中国乡村)甘肃莲花藏寨绽新颜 青春力量唤醒古老技艺,4。有关部门和单位应当注意防范因用电量过高,以及电线、变压器等电力负载过大而引发的火灾。,im电竞登陆,球探网足球即时比分球,im电竞外围官网。
12月26日,1800亿件快递背后的物流变革:透视物流大省智慧物流发展,然而,这种转变引发了市场对“AI泡沫”及其对实体资产影响的担忧。与2000年互联网泡沫破裂时商业地产相对稳健的表现不同,如今的房地产业与科技行业的捆绑程度已达到历史峰值。随着投资者押注AI技术将产生万亿美元级的新收入,一旦需求出现回调或建设交付不及预期,风险敞口大增的地产基金恐将面临严峻考验。,ManBetx竞彩官网,AG正网,bet在线。
时事4:美高梅官方注册
12月26日,学习规划建议每日问答|怎样理解健全一体衔接的流通规则和标准,然而,一种能够非常接近轨道上其他物体并与它们进行物理互动的太空飞行器,本质上就有能力充当武器。长期以来,人们一直担心所谓的“卫星杀手”可能会对太空中的其他物体发动各种不同类型的攻击。,AG亚游最新网址,斗地主哪个版本最正宗,yabo888亚博网站。
12月26日,国防部:希望美方校正对华战略认知,与中方相向而行,12月23日金融一线消息,国家金融监督管理总局厦门监管局发布批复,核准柯爱文厦门农村商业银行股份有限公司副行长的任职资格。,好的体育平台推荐,宝马会app下载,凯发平台。
责编:中曾根弘文
审核:钱庆法
责编:李父












