搜索 猫眼电影 融媒体矩阵
  • 山东手机报

  • 猫眼电影

  • 大众网官方微信

  • 大众网官方微博

  • 抖音

  • 人民号

  • 全国党媒平台

  • 央视频

  • 百家号

  • 快手

  • 头条号

  • 哔哩哔哩

首页 >新闻 >社会新闻

梁文锋署名,DeepSeek元旦新论文要开启架构新篇章

2025-12-28 10:03:10
来源:

猫眼电影

作者:

毕继红

手机查看

  猫眼电影记者 江瑶 报道首次登录送91元红包

机器之心编辑部

新年第一天,DeepSeek 发布了一篇新论文,提出了一种名为mHC(流形约束超连接)的新架构。

该研究旨在解决传统超连接在大规模模型训练中的不稳定性问题,同时保持其显著的性能增益 。

简单来说,DeepSeek 提出的 mHC 通过将传统 Transformer 的单一残差流扩展为多流并行架构,并利用 Sinkhorn-Knopp 算法将连接矩阵约束在双拟随机矩阵流形上,成功解决了超连接(HC)在大规模训练中因破坏恒等映射属性而导致的数值不稳定和信号爆炸问题。

论文标题:mHC: Manifold-Constrained Hyper-Connections论文地址:https://arxiv.org/pdf/2512.24880

这篇论文的第一作者有三位:Zhenda Xie(解振达)、Yixuan Wei(韦毅轩)、Huanqi Cao。值得注意的是,DeepSeek 创始人 & CEO 梁文锋也在作者名单中。

传统的残差连接(即 Transformer 中的 x + F (x) 结构)凭借「恒等映射」保证了信号无损传输和训练稳定性。但它的瓶颈在于信息通道的宽度受限于隐藏层维度 C。

近期,以字节跳动Seed团队提出的 Hyper-Connections (HC) 为代表的研究,通过扩展残差流宽度和多样化连接模式,拓展了过去十年中广泛应用的残差连接范式。

虽然这些方法带来了显著的性能提升,但但也带来了两个严重问题:

数值不稳定性: 原始的 HC 中,连接矩阵是自由学习的,没有约束。这导致信号在经过多层传播后,数值会「爆炸」或「消失」,破坏了恒等映射的特性,模型越深越难训练。系统开销大: 通道变宽意味着显存读写 (I/O) 和通信成本成倍增加,也就是所谓的「显存墙」问题。

从根本上破坏了残差连接固有的恒等映射属性,导致了严重的训练不稳定性和受限的可扩展性,并额外增加了显著的内存访问开销。

为了解决这些挑战,DeepSeek 的研究团队提出了Manifold-Constrained Hyper-Connections (mHC,流形约束超连接)。

这是一个通用框架,它将 HC 的残差连接空间投影到一个特定的流形上,以恢复恒等映射属性,同时结合严格的基础设施优化以确保效率。

它的核心目的是:在保留「加宽残差流」带来的性能提升的同时,解决其导致的训练不稳定和显存消耗过大的问题。

团队利用Sinkhorn-Knopp 算法将残差连接矩阵投影到 Birkhoff 多胞形(双随机矩阵)上。这使得信号传播变为特征的「凸组合」,从数学上严格保证了信号范数的稳定性(能量守恒)。为了抵消加宽通道带来的开销,团队实施了内核融合、选择性重计算以及扩展的 DualPipe 通信计算重叠策略。

实证表明,mHC 不仅解决了稳定性问题,且在大规模训练中(如 27B 模型)表现出卓越的可扩展性。在 n=4 的扩展倍率下,仅增加了 6.7% 的训练时间开销,却换来了显著的性能提升。mHC 为基础模型的拓扑架构演进指明了方向。

图 1:残差连接范式示意图。 本图对比了以下三种结构设计: (a) 标准残差连接(Residual Connection); (b) Hyper-Connections (HC); (c) 我们提出的 Manifold-Constrained Hyper-Connections (mHC)。与无约束的 HC 不同,mHC 专注于优化残差连接空间,通过将矩阵投影到受约束的流形上,以确保稳定性。

具体方法介绍

流形约束超连接 (mHC)

借鉴恒等映射(Identity Mapping)原则,mHC 的核心前提是将残差映射

虽然原始的恒等映射是通过强制执行

因此,该 DeepSeek 团队提出将残差映射投影到一个流形上,既能保持跨层信号传播的稳定性,又能促进残差流之间的相互作用,以保持模型的表达能力(expressivity)。

为此,他们的做法是将

形式上,令

其中 1_n 表示全 1 的 n 维向量。

为什么选择双拟随机性?因为其具有多项有利于大规模训练的理论属性:

),这意味着学习到的映射是非扩张的,可有效缓解梯度爆炸问题。范数保持:其谱范数有界且不超过 1(即

复合封闭性:双拟随机矩阵集对矩阵乘法具有封闭性,确保了跨多层的复合残差映射仍保持双拟随机,从而可在整个模型深度上维持稳定性。几何解释:该集合构成了 Birkhoff 多胞形,是排列矩阵集的凸包。这意味着残差映射充当了排列的凸组合,其重复应用会单调地增加跨流的信息混合,起到鲁棒的特征融合作用。

此外,该团队还对输入映射

参数化与流形投影

本节将详述 mHC 中各映射的计算过程。

给定第 l 层的输入隐藏矩阵 x_l,先将其展平为向量

最终的约束映射通过以下方式获得:

DeepSeek 在实验中采用 t_max=20 次迭代。

高效基础设施设计

DeepSeek 还为 mHC 量身定制了基础设施设计,使其在 n=4 时在大模型中的训练开销仅增加 6.7%:

算子融合 (Kernel Fusion):

重新调整 RMSNorm 的顺序以提高效率,并采用混合精度策略。

开发了统一的算子,将多次扫描和矩阵乘法融合,减少内存带宽瓶颈和算子启动开销。

在单个算子中实现 Sinkhorn-Knopp 迭代及其自定义反向传播。

重计算 (Recomputing):

为了减轻 n 流设计带来的内存压力,DeepSeek 在前向传播后丢弃 mHC 算子的中间激活,并在反向传播时即时重新计算。

通过推导得出最优重计算块大小 L_r^*,以最小化总内存占用。

DualPipe 中的通信重叠:

扩展了 DualPipe 调度算法,以改善流水线并行阶段边界处的通信与计算重叠在专用高优先级计算流上执行 MLP 层的内核,并避免在注意力层使用持久算子,以防止阻塞通信流并提高设备利用率。

实验设置

研究团队通过语言模型预训练来验证所提方法的有效性,并对基线模型、超连接(HC)以及提出的流形约束超连接(mHC)进行了对比分析。

他们采用了受 DeepSeek-V3 启发的 MoE 架构,训练了四种不同的模型变体,以覆盖不同的评估体系。

具体而言,HC 和 mHC 的扩展率 n 均设置为 4,主要关注点是一个 27B 参数规模的模型。其训练数据集的大小与其参数量成正比,该模型用于展示系统层面的主要结果。在此基础上,他们通过引入使用成比例数据训练的较小的 3B 和 9B 模型来分析计算扩展性,从而观察不同计算规模下的性能趋势。此外,为了专门研究 Token 规模的影响,他们另外训练了一个独立的 3B 模型,该模型在一个固定的 1T Token 的语料库上进行训练。

主要结果

图 5:流形约束超连接 (mHC) 的训练稳定性。 该图展示了:(a) mHC 和 HC 相对于基线模型的训练损失绝对差值;(b) 三种方法在训练过程中的梯度范数。所有实验均基于 27B 参数规模的模型。实验结果表明,mHC 在损失函数和梯度范数两方面均表现出更优的稳定性。

研究团队首先考察 27B 模型的训练稳定性和收敛性。如图 5 (a) 所示,mHC 有效缓解了在 HC 中观察到的训练不稳定问题,与基线模型相比,最终损失降低了 0.021。图 5 (b) 中的梯度范数分析进一步证实了这种稳定性的提升:mHC 表现出明显优于 HC 的行为,保持了与基线模型相当的稳定轮廓。

表 4:27B 模型在系统级基准测试上的结果。 本表对比了基线模型、HC 以及 mHC 在 8 个不同的下游基准测试中的零样本和少样本性能表现。结果显示,mHC 始终优于基线模型,并在大多数基准测试中超越了 HC,证明了其在大规模预训练中的有效性。

表 4 展示了在多种下游基准测试中的性能表现。mHC 带来了全面的提升,一致性地优于基线模型,并在大多数任务上超过了 HC。值得注意的是,与 HC 相比,mHC 进一步增强了模型的推理能力,在 BBH 和 DROP 任务上分别实现了 2.1% 和 2.3% 的性能增益。

规模扩展实验

图 6:mHC 与基线模型的扩展特性对比。 (a) 计算扩展曲线:实线描绘了在不同计算预算下的性能差距。每个点代表模型大小与数据集大小的最优计算配置,涵盖了从 3B、9B 到 27B 参数规模的规模扩展过程。 (b) Token 扩展曲线:展示了 3B 模型在训练过程中的轨迹。每个点代表模型在不同训练 Token 数量下的性能表现。

为了评估该方法的扩展性,研究者报告了在不同规模下 mHC 相对于基线模型的损失改善情况。在图 6 (a) 中,他们绘制了涵盖 3B、9B 和 27B 参数规模的计算规模扩展曲线。其轨迹表明,即使在更高的计算预算下,性能优势依然稳健地得以保持,仅表现出轻微的衰减。

此外,他们在图 6 (b) 中考察了训练过程中的动态变化,展示了 3B 模型的 Token 扩展曲线。总的来看,这些发现验证了 mHC 在大规模场景下的有效性。这一结论在他们内部的大规模训练实验中得到了进一步的证实。

更多详情请参阅原论文。

 时事1:大发888黄金

  12月28日,A股消费股周一涨幅居前,黄修平说,超长海底隧道往往工程规模大、建设周期长、投资金额高,需要对前期调研、设计、施工、设备采购以及后期维护等全寿命周期进行统筹管理,特别是风险管理变得尤为重要,需要对可能出现的技术、环境、经济等问题进行全面评估和应对。此外,他补充说,“海底隧道需要穿越海底沟谷、风化深槽,特别是渤海通道刚好处于地震带上,存在活动断裂带。复杂的水文地质条件给海底隧道设计与施工都带来巨大的挑战。”,凯时k66会员登录。

  12月28日,周六迎欧冠首战 再赴德国的樊振东持续带火欧洲乒乓市场,杨晓磊认为,对于LP而言,有较大的产业投资人主导投资,不仅意味着获投企业有采购的可能、新技术应用的机会,还可以解决当下创投基金资金效率不高的问题,“过往的财务投资LP们会存在互相等待资金到位的情况,而一个较大的产业投资人作为产业、资金的双重基石,提升了资金及时到位、快速寻找方向的可能性。”,贝博bb平台体育全站版,体育外围app下载,网上的AG真人视频真假。

 时事2:沙巴体育app软件

  12月28日,AI教育走进北京市丰台区怡海中学,证券日报网讯 12月26日,瑞德智能在互动平台回答投资者提问时表示,公司暂未布局太赫兹领域。未来如有相关进展,公司将严格按照信息披露规则及时履行披露义务。,3133拉斯维加斯官网,永乐国际网站首页登录,Ag怎么玩。

  12月28日,中国企业品牌向南非青少年足球项目捐赠助力青训,中国政府推动科技自主的政策,也进一步刺激了市场对中国人工智能企业的需求。中国已加快了芯片制造商的重磅上市进程,其中备受瞩目的 “中国英伟达”—— 摩尔线程,以及元识智能(MetaX)均于本月登陆资本市场。,葡京体育在线登陆,亚洲彩票安卓版,菲律宾亚星国际登录。

 时事3:6up和pokerstars

  12月28日,天天学习|情暖冬日,这是2022年2月航天员叶光富在中国空间站演奏《月光下的凤尾竹》的“名场面”。时隔2年多,叶光富再次飞天,这次他将会带另外一种乐器前往空间站。,正版通天报(会员版),凤凰彩票平台下载,最新澳门游戏网站网址。

  12月28日,一桌侨味菜熬百年烟火 烹鲜甜本味,瑞银全球财富管理在本月发布的一份报告中,将中国科技板块评为 “最具吸引力” 标的。报告指出,投资者寻求地域多元化配置,加之中国 “强劲的政策支持、技术自主战略推进以及人工智能商业化进程提速”,共同推动了该板块的投资价值。,体育在线网站,滚球app平台,金沙电子网址。

 时事4:中欧体育app

  12月28日,(走进中国乡村)甘肃莲花藏寨绽新颜 青春力量唤醒古老技艺,“我们强烈呼吁欧委会严格遵守世贸组织和欧盟反补贴相关规则,保持客观、公正、透明,尽早纠正错误认定并终止调查,共同促进中欧汽车产业共融互通,维护中欧经贸合作大局,实现全球绿色可持续发展目标。”作为本次调查的行业抗辩方的中国机电商会表示,将在前期工作基础上,进一步通过各种手段坚决捍卫中国电动汽车企业合法权益。,世界杯买球bs18^me权威,米乐m6平台官方版客服,im电竞投注在线下载。

  12月28日,重庆发布“夜重庆”文旅品牌 “五夜”魅力绘文旅新图景,双方主张维护中东地区和平稳定,反对干涉地区国家内政。双方支持在以“两国方案”为关键要素的公认国际法基础上全面、公正、持久解决巴勒斯坦问题,期待看到建立以1967年边界为基础,东耶路撒冷为首都,与以色列和平安全共存的独立的巴勒斯坦国。,2026篮球世界杯投注,凯时投注登录,小金体育网址。

责编:李小冉

审核:叶丽仪

责编:宋颂

相关推荐 换一换